Finite p-groups, automorphisms, multiple holomorphs, and skew braces

Andrea Caranti

Omaha, 30 May 2023

Dipartimento di Matematica
Università degli Studi di Trento
Italy

Nilpotent groups

Let G be a group. The commutator of $x, y \in G$ is

$$
[x, y]=x^{-1} y^{-1} x y=x^{-1} x^{y}=(y x)^{-1} x y .
$$

Thus $x y=y x[x, y]$, so that $x y=y x$ iff $[x, y]=1$.
The commutator of two subgroups $H, K \leq G$ is the subgroup

$$
[H, K]=\langle[h, k]: h \in H, k \in K\rangle .
$$

Thus G is abelian iff $G^{\prime}=[G, G]=\{1\}$.
The lower central series of G is defined recursively as

$$
\begin{aligned}
& \gamma_{1}(G)=G \\
& \gamma_{i+1}(G)=\left[\gamma_{i}(G), G\right], \text { for } i \geq 1
\end{aligned}
$$

A group G is nilpotent if $\gamma_{n+1}(G)=\{1\}$ for some n. The minimum such n is the (nilpotence) class of G. So the groups of class one are the non-trivial abelian groups.

Groups of class two

A group G has class (at most) two if for all $x, y, z \in G$ one has

$$
[[x, y], z]=1, \quad \text { or equivalently } \quad[x, y]^{z}=z^{-1}[x, y] z=[x, y]
$$

that is, the derived group

$$
G^{\prime}=[G, G]=\langle[x, y]: x, y \in G\rangle
$$

is contained in the centre

$$
\begin{aligned}
Z(G) & =\{z \in G:[z, x]=1 \text { for all } x \in G\} \\
& =\left\{z \in G: z^{x}=z \text { for all } x \in G\right\} .
\end{aligned}
$$

Calculations in an individual group of class two are somewhat easy

$$
(x y)^{2}=x y x y=x x y[y, x] y=x^{2} y^{2}[y, x] .
$$

More generally, in a group of class two one has for all n

$$
(x y)^{n}=x^{n} y^{n}[y, x]^{\binom{n}{2}}
$$

Finite p-groups

Let p be a prime. A finite p-group (that is, a group of order p^{n} for some integer n) is nilpotent.

Finite, abelian p-groups are easily classified in terms of partitions.
The standard commutator identity

$$
[x, y z]=[x, z][x, y]^{z}
$$

shows that in a group of class two commutators are bilinear functions.

In finite p-groups of class two p-th powers also behave well for $p>2$. For instance, if x, y have order $p>2$, then

$$
(x y)^{p}=x^{p} y^{p}[y, x]^{\binom{p}{2}}=x^{p} y^{p}\left[y, x^{\binom{p}{2}}\right]=1,
$$

so their product $x y$ has order (at most) p. If $p=2$, this does not work $\left((x y)^{2}=x^{2} y^{2}[y, x]\right)$, see the dihedral group of order 8 .

Automorphisms

Let G be a (nilpotent) group. Its group of central automorphisms is

$$
\operatorname{Aut}_{c}(G)=C_{\operatorname{Aut}(G)}(\operatorname{lnn}(G))
$$

Here $\operatorname{Aut}(G)$ is the group of automorphisms of G, and $\operatorname{Inn}(G)$ is the group of inner automorphisms, that is, the image of the map

$$
\begin{aligned}
& G \rightarrow \operatorname{Aut}(G) \\
& g \mapsto\left(x \mapsto x^{g}=g^{-1} x g\right) .
\end{aligned}
$$

The kernel of this map is $Z(G)$, so that $\operatorname{lnn}(G) \cong G / Z(G)$. It follows that

$$
\begin{aligned}
\operatorname{Aut}_{c}(G) & =\{\alpha \in \operatorname{Aut}(G): \alpha \text { acts trivially on } G / Z(G)\} \\
& =\operatorname{ker}(\operatorname{restriction} \operatorname{map} \operatorname{Aut}(G) \rightarrow \operatorname{Aut}(G / Z(G))) .
\end{aligned}
$$

Too many groups

雷 H. Heineken and H. Liebeck
The occurrence of finite groups in the automorphism group of nilpotent groups of class 2 Arch. Math. (Basel) 25 (1974), 8-16

Theorem (Heineken and Liebeck)

Let X be an arbitrary finite group, $p>2$ a prime. Then there is a finite p-group G of class two such that $\operatorname{Aut}(G) / \operatorname{Aut}_{c}(G) \cong X$.

- The class of finite p-groups of class two is as complicated as the class of all finite groups.
- If G is a nonabelian finite p-group, then $\operatorname{Inn}(G)$ is a non-trivial normal p-subgroup of $\operatorname{Aut}(G)$.
- (Adney and Yen) If the finite p-group G has no non-trivial central factor, then $\operatorname{Aut}_{c}(G) \unlhd \operatorname{Aut}(G)$ is a p-group.
- If G has class two, then $\operatorname{Inn}(G) \leq \operatorname{Aut}_{c}(G)$.

Coclass (a diversion) I

The coclass of a finite p-group of order p^{n} and class c is $n-c$.
When $n-c=1$ one speaks of a group of maximal class, as $n-1$ is the highest possible class for a group of order p^{n}.

For each p, there is only one infinite pro-p-group of maximal class.

1. When $p=2$ this is the 2-adic dihedral group, the extension of the group \mathbf{Z}_{2} of diadic integers by an element inducing the automorphism which takes an element to its opposite.
2. For an arbitrary p, this is the extension of $\mathbf{Z}_{p}[\omega]$, where ω is a primitive p-th root of unity, by an element of order p acting as multiplication by ω.

Coclass (a diversion) II

圊 C.R. Leedham-Green and M.F. Newman
Space groups and groups of prime-power order. I
Arch. Math. (Basel) 35 (1980), no. 3, 193-202
It is a deep result that for every r and prime p, there are a finite number of infinite pro- p-group of coclass r, and these are soluble.
C.R. Leedham-Green

The structure of finite p-groups
J. London Math. Soc. (2) 50 (1994), no. 1, 49-67

图 Aner Shalev
The structure of finite p-groups: effective proof of the coclass conjectures
Invent. Math. 115 (1994), no. 2, 315-345
Possibly as close to a classification of finite p-groups as it gets.

A special class of finite p-groups of class two

Let p be an odd prime.
$G=\left\langle x_{1}, \ldots, x_{n}:\right.$ class two, and $x_{i}^{p}=\prod_{j<k}\left[x_{j}, x_{k}\right]^{\left.d_{i,(j, k)}, i=1, \ldots n\right\rangle,}$
where $D=\left[d_{i,(j, k)}\right]$ is an $n \times\binom{ n}{2}$ matrix of maximum rank.
We have

$$
\begin{aligned}
{\left[x_{i}, x_{t}\right]^{p} } & =\left[x_{i}^{p}, x_{t}\right] \\
& =\left[\prod_{j<k}\left[x_{j}, x_{k}\right]^{d_{i,(j, k)}}, x_{t}\right] \\
& =\prod_{j<k}\left[\left[x_{j}, x_{k}\right], x_{t}\right]^{d_{i,(j, k)}}=1,
\end{aligned}
$$

that is, $[G, G]^{p}=1$.

More details

$$
G=\left\langle x_{1}, \ldots, x_{n}: \text { class two, and } x_{i}^{p}=\prod_{j<k}\left[x_{j}, x_{k}\right]^{d_{i,(j, k)}}, i=1, \ldots n\right\rangle,
$$

Since $[G, G]^{p}=1$, and $G^{p} \leq[G, G]$, we have $G^{p^{2}}=1$. Moreover,

$$
(y z)^{p}=y^{p} z^{p}[z, y]^{\binom{p}{2}}=y^{p} z^{p},
$$

that is, the map $y \mapsto y^{p}$ is a morphism $G \rightarrow[G, G]$. Thus

$$
\begin{aligned}
& \left(\prod_{i} x_{i}^{e_{i}}\right)^{p}=\left(\prod_{i} x_{i}^{p}\right)^{e_{i}}=\prod_{i}\left(\prod_{j<k}\left[x_{j}, x_{k}\right]^{d_{i,(j, k)}}\right)^{e_{i}}= \\
& =\prod_{j<k}\left(\prod_{i}\left[x_{j}, x_{k}\right]^{d_{i,(j, k)}}\right)^{e_{i}}=\prod_{j<k}\left[x_{j}, x_{k}\right]^{\sum_{i} e_{i} d_{i,(j, k)}}
\end{aligned}
$$

Thus $\left(\prod_{i} x_{i}^{e_{i}}\right)^{p}=1$ iff $\sum_{i} e_{i} d_{i,(j, k)}=0$ in $\operatorname{GF}(p)$. Since
$D=\left[d_{i,(j, k)}\right]$ is of maximum rank, this holds iff $\left(e_{1}, \ldots, e_{n}\right)=0$ in $\operatorname{GF}(p)^{n}$, i.e., all exponents e_{i} are divisible by p, i.e. $\prod_{i} x_{i}^{e_{i}} \in G^{\prime}$.
Thus $\Omega_{1}(G)=\left\langle g \in G: g^{p}=1\right\rangle=[G, G]$.

Some linear algebra I

$G^{\prime}=[G, G]$ and $V=G / G^{\prime}$ are elementary abelian p-groups, thus vector spaces over $G F(p)$.

A construction via repeated cyclic extensions shows that the $\left[x_{j}, x_{k}\right]$, for $j<k$, are a base for the vector space G^{\prime}.

Thus, there is an isomorphism of vector spaces

$$
\begin{aligned}
& G^{\prime} \rightarrow \bigwedge^{2} V \\
& {\left[x_{i}, x_{j}\right] \mapsto\left(x_{i} G^{\prime}\right) \wedge\left(x_{j} G^{\prime}\right) .}
\end{aligned}
$$

Some Linear Algebra II

$V=G / G^{\prime}$ and $G^{\prime} \cong \bigwedge^{2} V$ are vector spaces over $\operatorname{GF}(p)$. Write $v_{i}=x_{i} G^{\prime}$. Recall $x_{i}^{p}=\prod_{j<k}\left[x_{j}, x_{k}\right]^{d_{i,(j, k)}}$.

Then the p-th power map in G induces an injective linear map

$$
\begin{aligned}
\pi: V & \rightarrow \bigwedge^{2} V \\
v_{i} & \mapsto \sum_{j<k} d_{i,(j, k)} v_{j} \wedge v_{k},
\end{aligned}
$$

whose matrix is $D=\left[d_{i,(j, k)}\right]$.
$\operatorname{Recall} \operatorname{Aut}(G) / \operatorname{Aut}_{c}(G)$ is the image of $\operatorname{Aut}(G)$ under

$$
\operatorname{Aut}(G) \rightarrow \operatorname{Aut}(G / Z(G))=G L(V)
$$

$\operatorname{Aut}(G) / \operatorname{Aut}_{c}(G)$ is the group of automorphisms induced on V, thus a subgroup of $\mathrm{GL}(V)$.

Some Linear Algebra III

Let $\widehat{\alpha}$ be the map induced on $\Lambda^{2} V$ by $\alpha \in \mathrm{GL}(V)$:

$$
(v \wedge w)^{\widehat{\alpha}}=v^{\alpha} \wedge w^{\alpha}
$$

Then

$$
\begin{aligned}
\operatorname{GL}(V) & \geq \operatorname{Aut}(G) / \operatorname{Aut}_{c}(G) \\
& =\{\alpha \in \mathrm{GL}(V): \alpha \circ \pi=\pi \circ \widehat{\alpha}\},
\end{aligned}
$$

that is, the elements $\alpha \in G L(V)$ that belong to $\operatorname{Aut}(G) / \operatorname{Aut}_{c}(G)$ are those for which the following diagram commutes

$$
\begin{gathered}
V \\
\downarrow \\
V \xrightarrow[\pi]{\pi} \Lambda^{2} V \\
\Lambda^{2} V
\end{gathered}
$$

Some Linear Algebra IV

$$
\operatorname{GL}(V) \geq \operatorname{Aut}(G) / \operatorname{Aut}_{c}(G)=\{\alpha \in \operatorname{GL}(V): \alpha \circ \pi=\pi \circ \widehat{\alpha}\},
$$

or, in matrix terms $\alpha D=D \widehat{\alpha}$, since D is the matrix of the p-th power map $\pi: V \rightarrow \bigwedge^{2} V$. This idea has been introduced for $\operatorname{dim}(V)=3$ in
目 G. Daues and H. Heineken
Dualitäten und Gruppen der Ordnung p^{6}
Geometriae Dedicata 4 (1975), 215-220
and then used for $\operatorname{dim}(V)=4$ in
目 A.C.
Automorphism groups of p-groups of class 2 and exponent p^{2} : a classification on 4 generators Ann. Mat. Pura Appl. (4) 134 (1983), 93-146

Some linear algebra V

$$
\begin{aligned}
\operatorname{GL}(V) & \geq \operatorname{Aut}(G) / \operatorname{Aut}_{c}(G) \\
& =\{\alpha \in \mathrm{GL}(V): \alpha \circ \pi=\pi \circ \widehat{\alpha}\},
\end{aligned}
$$

or, in matrix terms,

$$
\alpha D=D \widehat{\alpha},
$$

where D is the matrix of the p-th power map $\pi: V \rightarrow \bigwedge^{2} V$.
A proof of this characterisation, and of an extension of it, is contained in
© A.C and C. Tsang
Finite p-groups of class two with a large multiple holomorph
J. Algebra 617 (2023), 476-499

Modifying a group operation I

Reinhold Baer

Groups with abelian central quotient group

Trans. Amer. Math. Soc. 44 (1938), no. 3, 357-386
Let G be a group of nilpotence class two admitting unique square roots. For instance, G could be a finite p-group, for $p>2$, and $\sqrt{g}=g^{(\exp (G)+1) / 2}$. Define

$$
g \circ h=g \cdot h \cdot[g, h]^{-1 / 2}
$$

Then (G, \circ) is an abelian group.

$$
\begin{aligned}
h \circ g & =h \cdot g \cdot[h, g]^{-1 / 2}=g \cdot h \cdot[h, g] \cdot[h, g]^{-1 / 2} \\
& =g \cdot h \cdot[h, g]^{1 / 2}=g \cdot h \cdot[g, h]^{-1 / 2}=g \circ h .
\end{aligned}
$$

This is a very special case of the Lazard correspondence and the Baker-Campbell-Hausdorff formula.

Modifying a group operation II

$$
g \circ h=g \cdot h \cdot[g, h]^{-1 / 2}
$$

In a group G of nilpotence class two, commutators are bilinear (and alternating) functions. If you take any bilinear function

$$
\Delta: G \times G \rightarrow G^{\prime}
$$

then

$$
x \circ y=x \cdot y \cdot \Delta(x, y)
$$

defines another group operation on the set G. For instance, the inverse in $(G, 0)$ is $x^{\ominus 1}=x^{-1} \cdot \Delta(x, x)$, as

$$
x \circ\left(x^{-1} \cdot \Delta(x, x)\right)=x \cdot x^{-1} \cdot \Delta(x, x) \cdot \Delta\left(x, x^{-1} \cdot \Delta(x, x)\right)
$$

Now G^{\prime} is in both kernels of Δ, as the codomain G^{\prime} is abelian. Thus this equals $\Delta(x, x) \cdot \Delta\left(x, x^{-1}\right)=1$.

The proof of associativity follows the same pattern.

Skew braces

A skew brace is a triple (G, \cdot, \circ), where "." and " \circ " are two group operations on G, related by

$$
((x y) \circ z) \cdot z^{-1}=(x \circ z) \cdot z^{-1} \cdot(y \circ z) \cdot z^{-1} .
$$

In other words, for each $z \in G$ the map

$$
\begin{aligned}
\gamma(z): & G \\
x & \mapsto(x \circ z) \cdot z^{-1}
\end{aligned}
$$

is an endomorphism of (G, \cdot). Actually,

$$
\gamma:(G, \circ) \rightarrow \operatorname{Aut}(G)
$$

is a morphism. Then

$$
x^{\gamma(z)}=(x \circ z) \cdot z^{-1}
$$

rephrases as

$$
x \circ z=x^{\gamma(z)} \cdot z
$$

Central automorphisms I

The characterisation

$$
\operatorname{GL}(V) \geq \operatorname{Aut}(G) / \operatorname{Aut}_{c}(G)=\{\alpha \in \operatorname{GL}(V): \alpha \circ \pi=\pi \circ \widehat{\alpha}\},
$$

has been used in
图 A.C.
A simple construction for a class of p-groups with all of their automorphisms central
Rend. Semin. Mat. Univ. Padova 135 (2016), 251-258
to exhibit explicit examples of groups of class two with all of their automorphisms central.

Cindy and I have been using these groups to construct examples where the multiple holomorph is big. (To be made more precise soon.)

Skew braces, regular subgroups and the multiple holomorph

Let (G, \cdot) be a finite group, $\rho:(G, \cdot) \rightarrow \operatorname{Sym}(G)$ its right regular representation. A skew brace (G, \cdot, \circ) corresponds to a regular subgroup $N \leq \operatorname{Hol}(G, \cdot)=N_{\text {Sym }(G)}(\rho(G))=\operatorname{Aut}(G) \rho(G)$ such that $N \cong(G, \circ)$.

The multiple holomorph of (G, \cdot) is

$$
N_{\text {Sym }(G)}(\operatorname{Hol}(G))=N_{\text {Sym }(G)}\left(N_{\text {Sym }(G)}(\rho(G))\right) .
$$

It acts transitively on the set of the regular subgroups N such that

1. $N \unlhd \operatorname{Hol}(G)$, and
2. $(G, \cdot) \cong(G, \circ)$,
so that the group

$$
T(G)=N_{\operatorname{Sym}(G)}(\operatorname{Hol}(G)) / \operatorname{Hol}(G)
$$

acts regularly on the set of these regular subgroups.

Small is beautiful

$$
T(G)=N_{\operatorname{Sym}(G)}(\operatorname{Hol}(G)) / \operatorname{Hol}(G)
$$

acts regularly on the set of the regular subgroups N of $\operatorname{Sym}(G)$ such that

$$
N \unlhd \operatorname{Hol}(G), \quad \text { and } \quad(G, \cdot) \cong(G, \circ)
$$

The first condition translates, in terms of gamma functions, to

$$
\gamma\left(x^{\beta}\right)=\gamma(x)^{\beta}=\beta^{-1} \gamma(x) \beta, \quad \text { for all } \beta \in \operatorname{Aut}(G)
$$

So if you want a big multiple holomorph (actually, a big $T(G)$), it is advisable to have $\operatorname{Aut}(G)$ as small as possibile.

固 Tim Kohl
Multiple holomorphs of dihedral and quaternionic groups
Comm. Algebra 43 (2015), no. 10, 4290-4304

Central automorphisms II

圊 J.E. Adney and Ti Yen
Automorphisms of a p-group.
Illinois J. Math. 9 (1965), 137-143
If G has no abelian direct factors, then the elements of $\operatorname{Aut}_{c}(G)$ correspond to the elements of $\operatorname{Hom}(G, Z(G))$, via

$$
x \cdot x^{f} \leftrightarrow f, \quad \text { and } \quad \beta \mapsto\left(x \mapsto x^{-1} x^{\beta}=[x, \beta]\right)
$$

So if $\operatorname{Aut}(G)=\operatorname{Aut}_{c}(G)$ (i.e. $\operatorname{Aut}(G)$ is as small as possible), then $x^{\gamma(y)}=x \cdot[x, \gamma(y)]$, where $x \mapsto[x, \gamma(y)]$ is in $\operatorname{Hom}(G, Z(G))$, for a fixed y. Thus

$$
x \circ y=x^{\gamma(y)} \cdot y=x \cdot[x, \gamma(y)] \cdot y=x \cdot y \cdot[x, \gamma(y)]
$$

In fact, $\Delta:(x, y) \mapsto[x, \gamma(y)]$ is an arbitrary bilinear function with values in $Z(G)$.

From bilinear to linear

$x \circ y=x \cdot y \cdot \Delta(x, y)$, with $\quad \Delta: V \times V \mapsto \bigwedge^{2} V$ bilinear. In the class of groups described above $V=G / G^{\prime}$ and $G^{\prime} \cong \Lambda^{2} V$.

To determine the multiple holomorph, you want to determine those " \circ ", and thus those Δ, for which $(G, \cdot) \cong(G, \circ)$.

Symmetric bilinear maps Δ always give that.
Now an alternating bilinear map

$$
\Delta: V \times V \rightarrow \bigwedge^{2} V
$$

corresponds, by the universal property of the external square, to a linear map

$$
\sigma: \bigwedge^{2} V \rightarrow \bigwedge^{2} V
$$

Commutators

$$
x \circ y=x \cdot y \cdot \Delta(x, y)
$$

with $\Delta: V \times V \mapsto \bigwedge^{2} V$ bilinear and alternating, described by

$$
\sigma: \bigwedge^{2} V \rightarrow \bigwedge^{2} V
$$

A straightforward computation yields

$$
\begin{aligned}
{[x, y]_{\circ} } & =[x, y] \cdot \Delta(x, y) \cdot \Delta(y, x)^{-1} \\
& =[x, y] \cdot \Delta(x, y)^{2} \\
& =[x, y]^{1+2 \sigma} .
\end{aligned}
$$

Thus (G, \cdot) cannot be isomorphic to (G, \circ) when $\sigma \in \operatorname{End}\left(\Lambda^{2} V\right)$ has $-1 / 2$ as an eigenvalue, because then the derived subgroup of (G, \circ) is smaller than that of (G, \cdot).

This happened with Baer's formula $x \circ y=x \cdot y \cdot[x, y]^{-1 / 2}$.

From automorphisms to isomorphisms I

The first diagram tells us that $\alpha \in \operatorname{Aut}(G) / \operatorname{Aut}_{c}(G) \leq G L(V)$ iff

$$
\alpha D=D \widehat{\alpha},
$$

where D is the matrix of the p-th power map $\pi: V \rightarrow \bigwedge^{2} V$ in (G, \cdot). The second diagram tells us that $(G, \cdot) \cong(G, \circ)$ iff there is $\alpha \in \mathrm{GL}(V)$ s.t.

$$
\alpha \pi_{\circ}=\pi \hat{\alpha},
$$

where $\pi, \pi_{0}: V \rightarrow \Lambda^{2} V$ are induced from the p-th power maps on (G, \cdot), resp. (G, \circ).

From automorphisms to isomorphisms II

$(G, \cdot) \cong(G, \circ)$ iff there is $\alpha \in \mathrm{GL}(V)$ such that

$$
\alpha \pi_{\circ}=\pi \hat{\alpha},
$$

where $\pi, \pi_{\circ}: V \rightarrow \bigwedge^{2} V$ are induced from the p-th power maps on (G, \cdot), resp. (G, \circ). When you put it in coordinates, you get

$$
\alpha D(1+2 \sigma)^{-1}=D \hat{\alpha},
$$

Heineken's characterization is the special case $\sigma=0$, that is, when "." and "०" coincide, and we are talking automorphisms of (G, \cdot).

Thanks!

That's All, Thanks!

