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Nilpotent groups

Let G be a group. The commutator of x , y ∈ G is

[x , y ] = x−1y−1xy = x−1xy = (yx)−1xy .

Thus xy = yx [x , y ], so that xy = yx iff [x , y ] = 1.

The commutator of two subgroups H, K ≤ G is the subgroup

[H, K ] = 〈 [h, k] : h ∈ H, k ∈ K 〉.

Thus G is abelian iff G ′ = [G , G ] = { 1 }.

The lower central series of G is defined recursively as

γ1(G) = G ,

γi+1(G) = [γi (G), G ], for i ≥ 1.

A group G is nilpotent if γn+1(G) = { 1 } for some n. The

minimum such n is the (nilpotence) class of G . So the groups of

class one are the non-trivial abelian groups. 1/25



Groups of class two

A group G has class (at most) two if for all x , y , z ∈ G one has

[[x , y ], z ] = 1, or equivalently [x , y ]z = z−1[x , y ]z = [x , y ],

that is, the derived group

G ′ = [G , G ] = 〈 [x , y ] : x , y ∈ G 〉

is contained in the centre

Z (G) = { z ∈ G : [z , x ] = 1 for all x ∈ G }
= { z ∈ G : zx = z for all x ∈ G } .

Calculations in an individual group of class two are somewhat easy

(xy)2 = xyxy = xxy [y , x ]y = x2y2[y , x ].

More generally, in a group of class two one has for all n

(xy)n = xnyn[y , x ](
n
2).
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Finite p-groups

Let p be a prime. A finite p-group (that is, a group of order pn for

some integer n) is nilpotent.

Finite, abelian p-groups are easily classified in terms of partitions.

The standard commutator identity

[x , yz ] = [x , z ][x , y ]z[x , yz ] = [x , z ][x , y ]

shows that in a group of class two commutators are bilinear

functions.

In finite p-groups of class two p-th powers also behave well for

p > 2. For instance, if x , y have order p > 2, then

(xy)p = xpyp[y , x ](
p
2) = xpyp[y , x(p

2)] = 1,

so their product xy has order (at most) p. If p = 2, this does not

work ((xy)2 = x2y2[y , x ]), see the dihedral group of order 8.
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Automorphisms

Let G be a (nilpotent) group. Its group of central automorphisms is

Autc(G) = CAut(G)(Inn(G)).

Here Aut(G) is the group of automorphisms of G , and Inn(G) is

the group of inner automorphisms, that is, the image of the map

G → Aut(G)

g 7→ (x 7→ xg = g−1xg).

The kernel of this map is Z (G), so that Inn(G) ∼= G/Z (G). It

follows that

Autc(G) = {α ∈ Aut(G) : α acts trivially on G/Z (G) }
= ker(restriction map Aut(G)→ Aut(G/Z (G))).
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Too many groups

H. Heineken and H. Liebeck

The occurrence of finite groups in the automorphism

group of nilpotent groups of class 2

Arch. Math. (Basel) 25 (1974), 8–16

Theorem (Heineken and Liebeck)

Let X be an arbitrary finite group, p > 2 a prime. Then there is

a finite p-group G of class two such that Aut(G)/ Autc(G) ∼= X .

• The class of finite p-groups of class two is as complicated as

the class of all finite groups.

• If G is a nonabelian finite p-group, then Inn(G) is a non-trivial

normal p-subgroup of Aut(G).

• (Adney and Yen) If the finite p-group G has no non-trivial

central factor, then Autc(G) E Aut(G) is a p-group.

• If G has class two, then Inn(G) ≤ Autc(G). 5/25



Coclass (a diversion) I

The coclass of a finite p-group of order pn and class c is n − c .

When n− c = 1 one speaks of a group of maximal class, as n − 1

is the highest possible class for a group of order pn.

For each p, there is only one infinite pro-p-group of maximal class.

1. When p = 2 this is the 2-adic dihedral group, the extension of

the group Z2 of diadic integers by an element inducing the

automorphism which takes an element to its opposite.

2. For an arbitrary p, this is the extension of Zp[ω], where ω is a

primitive p-th root of unity, by an element of order p acting as

multiplication by ω.
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Coclass (a diversion) II

C.R. Leedham-Green and M.F. Newman

Space groups and groups of prime-power order. I

Arch. Math. (Basel) 35 (1980), no. 3, 193–202

It is a deep result that for every r and prime p, there are a finite

number of infinite pro-p-group of coclass r , and these are soluble.

C.R. Leedham-Green

The structure of finite p-groups

J. London Math. Soc. (2) 50 (1994), no. 1, 49–67

Aner Shalev

The structure of finite p-groups: effective proof of the

coclass conjectures

Invent. Math. 115 (1994), no. 2, 315–345

Possibly as close to a classification of finite p-groups as it gets. 7/25



A special class of finite p-groups of class two

Let p be an odd prime.

G = 〈 x1, . . . , xn : class two, and xp
i =

∏

j<k

[xj , xk ]di,(j,k), i = 1, . . . n 〉,

where D = [di ,(j,k)] is an n ×
(n

2

)
matrix of maximum rank.

We have

[xi , xt ]
p = [xp

i , xt ]

= [
∏

j<k

[xj , xk ]di,(j,k) , xt ]

=
∏

j<k

[[xj , xk ], xt ]
di,(j,k) = 1,

that is, [G , G ]p = 1.
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More details

G = 〈 x1, . . . , xn : class two, and xp
i =

∏

j<k

[xj , xk ]di,(j,k), i = 1, . . . n 〉,

Since [G , G ]p = 1, and Gp ≤ [G , G ], we have Gp2
= 1. Moreover,

(yz)p = ypzp[z , y ](
p
2) = ypzp,

that is, the map y 7→ yp is a morphism G → [G , G ]. Thus

(
∏

i

xei

i )p = (
∏

i

xp
i )ei =

∏

i

(
∏

j<k

[xj , xk ]di,(j,k))ei =

=
∏

j<k

(
∏

i

[xj , xk ]di,(j,k))ei =
∏

j<k

[xj , xk ]
∑

i
ei di,(j,k)

Thus (
∏

i xei

i )p = 1 iff
∑

i ei di ,(j,k) = 0 in GF(p). Since

D = [di ,(j,k)] is of maximum rank, this holds iff (e1, . . . , en) = 0 in

GF(p)n, i.e., all exponents ei are divisible by p, i.e.
∏

i xei

i ∈ G ′.

Thus Ω1(G) = 〈 g ∈ G : gp = 1 〉 = [G , G ].
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Some linear algebra I

x1

xp
1

x2

xp
2

b b b

xn

xp
n

[G , G ] = Z (G) = Ω1(G)

base [xj , xk ], for j < k

G ′ = [G , G ] and V = G/G ′ are elementary abelian p-groups, thus

vector spaces over GF(p).

A construction via repeated cyclic extensions shows that the

[xj , xk ], for j < k, are a base for the vector space G ′.

Thus, there is an isomorphism of vector spaces

G ′ →
∧2

V

[xi , xj ] 7→ (xi G
′) ∧ (xjG

′).
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Some Linear Algebra II

V = G/G ′ and G ′ ∼= ∧2 V are vector spaces over GF(p). Write

vi = xiG
′. Recall xp

i =
∏

j<k [xj , xk ]di,(j,k).

Then the p-th power map in G induces an injective linear map

π : V →
∧2

V

vi 7→
∑

j<k

di ,(j,k)vj ∧ vk ,

whose matrix is D = [di ,(j,k)].

Recall Aut(G)/ Autc(G) is the image of Aut(G) under

Aut(G)→ Aut(G/Z (G)) = GL(V )

Aut(G)/ Autc(G) is the group of automorphisms induced on V ,

thus a subgroup of GL(V ).
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Some Linear Algebra III

Let α̂ be the map induced on
∧2 V by α ∈ GL(V ):

(v ∧ w)α̂ = vα ∧ wα.

Then

GL(V ) ≥ Aut(G)/ Autc(G)

= {α ∈ GL(V ) : α ◦ π = π ◦ α̂ } ,

that is, the elements α ∈ GL(V ) that belong to Aut(G)/ Autc(G)

are those for which the following diagram commutes

V

α

��

π
//
∧2 V

α̂
��

V π
//
∧2 V
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Some Linear Algebra IV

GL(V ) ≥ Aut(G)/ Autc(G) = {α ∈ GL(V ) : α ◦ π = π ◦ α̂ } ,

or, in matrix terms αD = Dα̂, since D is the matrix of the p-th

power map π : V → ∧2 V . This idea has been introduced for

dim(V ) = 3 in

G. Daues and H. Heineken

Dualitäten und Gruppen der Ordnung p6

Geometriae Dedicata 4 (1975), 215–220

and then used for dim(V ) = 4 in

A.C.

Automorphism groups of p-groups of class 2 and

exponent p2: a classification on 4 generators

Ann. Mat. Pura Appl. (4) 134 (1983), 93–146 13/25



Some linear algebra V

GL(V ) ≥ Aut(G)/ Autc(G)

= {α ∈ GL(V ) : α ◦ π = π ◦ α̂ } ,

or, in matrix terms,

αD = Dα̂,

where D is the matrix of the p-th power map π : V → ∧2 V .

A proof of this characterisation, and of an extension of it, is

contained in

A.C and C. Tsang

Finite p-groups of class two with a large multiple

holomorph

J. Algebra 617 (2023), 476–499
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Modifying a group operation I

Reinhold Baer

Groups with abelian central quotient group

Trans. Amer. Math. Soc. 44 (1938), no. 3, 357–386

Let G be a group of nilpotence class two admitting unique square

roots. For instance, G could be a finite p-group, for p > 2, and
√

g = g (exp(G)+1)/2. Define

g ◦ h = g · h · [g , h]−1/2.

Then (G , ◦) is an abelian group.

h ◦ g = h · g · [h, g ]−1/2 = g · h · [h, g ] · [h, g ]−1/2

= g · h · [h, g ]1/2 = g · h · [g , h]−1/2 = g ◦ h.

This is a very special case of the Lazard correspondence and the

Baker–Campbell–Hausdorff formula.
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Modifying a group operation II

g ◦ h = g · h · [g , h]−1/2.

In a group G of nilpotence class two, commutators are bilinear

(and alternating) functions. If you take any bilinear function

∆ : G × G → G ′

then
x ◦ y = x · y ·∆(x , y)

defines another group operation on the set G . For instance, the

inverse in (G , ◦) is x⊖1 = x−1 ·∆(x , x), as

x ◦ (x−1 ·∆(x , x)) = x · x−1 ·∆(x , x) ·∆(x , x−1 ·∆(x , x))

Now G ′ is in both kernels of ∆, as the codomain G ′ is abelian.

Thus this equals ∆(x , x) ·∆(x , x−1) = 1.

The proof of associativity follows the same pattern.
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Skew braces

A skew brace is a triple (G , ·, ◦), where “·” and “◦” are two group

operations on G , related by

((xy) ◦ z) · z−1 = (x ◦ z) · z−1 · (y ◦ z) · z−1.

In other words, for each z ∈ G the map

γ(z) : G → G

x 7→ (x ◦ z) · z−1

is an endomorphism of (G , ·). Actually,

γ : (G , ◦)→ Aut(G)

is a morphism. Then

xγ(z) = (x ◦ z) · z−1

rephrases as
x ◦ z = xγ(z) · z.
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Central automorphisms I

The characterisation

GL(V ) ≥ Aut(G)/ Autc(G) = {α ∈ GL(V ) : α ◦ π = π ◦ α̂ } ,

has been used in

A.C.

A simple construction for a class of p-groups with all of

their automorphisms central

Rend. Semin. Mat. Univ. Padova 135 (2016), 251–258

to exhibit explicit examples of groups of class two with all of their

automorphisms central.

Cindy and I have been using these groups to construct examples

where the multiple holomorph is big. (To be made more precise

soon.)
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Skew braces, regular subgroups and the multiple holomorph

Let (G , ·) be a finite group, ρ : (G , ·)→ Sym(G) its right regular

representation. A skew brace (G , ·, ◦) corresponds to a regular

subgroup N ≤ Hol(G , ·) = NSym(G)(ρ(G)) = Aut(G)ρ(G) such

that N ∼= (G , ◦).

The multiple holomorph of (G , ·) is

NSym(G)(Hol(G)) = NSym(G)(NSym(G)(ρ(G))).

It acts transitively on the set of the regular subgroups N such that

1. N E Hol(G), and

2. (G , ·) ∼= (G , ◦),

so that the group

T (G) = NSym(G)(Hol(G))/ Hol(G)

acts regularly on the set of these regular subgroups. 19/25



Small is beautiful

T (G) = NSym(G)(Hol(G))/ Hol(G)

acts regularly on the set of the regular subgroups N of Sym(G)

such that

N E Hol(G), and (G , ·) ∼= (G , ◦).
The first condition translates, in terms of gamma functions, to

γ(xβ) = γ(x)β = β−1γ(x)β, for all β ∈ Aut(G).

So if you want a big multiple holomorph (actually, a big T (G)), it

is advisable to have Aut(G) as small as possibile.

Tim Kohl

Multiple holomorphs of dihedral and quaternionic groups

Comm. Algebra 43 (2015), no. 10, 4290–4304
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Central automorphisms II

J.E. Adney and Ti Yen

Automorphisms of a p-group.

Illinois J. Math. 9 (1965), 137–143

If G has no abelian direct factors, then the elements of Autc(G)

correspond to the elements of Hom(G , Z (G)), via

x · x f ← [ f , and β 7→ (x 7→ x−1xβ = [x , β]).

So if Aut(G) = Autc(G) (i.e. Aut(G) is as small as possible), then

xγ(y) = x · [x , γ(y)], where x 7→ [x , γ(y)] is in Hom(G , Z (G)), for

a fixed y . Thus

x ◦ y = xγ(y) · y = x · [x , γ(y)] · y = x · y · [x , γ(y)].

In fact, ∆ : (x , y) 7→ [x , γ(y)] is an arbitrary bilinear function with

values in Z (G).
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From bilinear to linear

x ◦ y = x · y ·∆(x , y), with ∆ : V × V 7→
∧2

V bilinear.

In the class of groups described above V = G/G ′ and G ′ ∼=
∧2 V .

To determine the multiple holomorph, you want to determine those

“◦”, and thus those ∆, for which (G , ·) ∼= (G , ◦).

Symmetric bilinear maps ∆ always give that.

Now an alternating bilinear map

∆ : V × V →
∧2

V

corresponds, by the universal property of the external square, to a

linear map

σ :
∧2

V →
∧2

V .
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Commutators

x ◦ y = x · y ·∆(x , y),

with ∆ : V × V 7→ ∧2 V bilinear and alternating, described by

σ :
∧2

V →
∧2

V .

A straightforward computation yields

[x , y ]◦ = [x , y ] ·∆(x , y) ·∆(y , x)−1

= [x , y ] ·∆(x , y)2

= [x , y ]1+2σ .

Thus (G , ·) cannot be isomorphic to (G , ◦) when σ ∈ End(
∧2 V )

has −1/2 as an eigenvalue, because then the derived subgroup of

(G , ◦) is smaller than that of (G , ·).

This happened with Baer’s formula x ◦ y = x · y · [x , y ]−1/2. 23/25



From automorphisms to isomorphisms I

V

α

��

π
//
∧2 V

α̂
��

V π
//
∧2 V

V

α

��

π
//
∧2 V

α̂
��

V π◦

//
∧2 V

.

The first diagram tells us that α ∈ Aut(G)/ Autc(G) ≤ GL(V ) iff

αD = Dα̂,

where D is the matrix of the p-th power map π : V → ∧2 V in

(G , ·). The second diagram tells us that (G , ·) ∼= (G , ◦) iff there is

α ∈ GL(V ) s.t.

απ◦ = πα̂,

where π, π◦ : V → ∧2 V are induced from the p-th power maps on

(G , ·), resp. (G , ◦).
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From automorphisms to isomorphisms II

V

α

��

π
//
∧2 V

α̂
��

V π◦

//
∧2 V

.

(G , ·) ∼= (G , ◦) iff there is α ∈ GL(V ) such that

απ◦ = πα̂,

where π, π◦ : V → ∧2 V are induced from the p-th power maps on

(G , ·), resp. (G , ◦). When you put it in coordinates, you get

αD(1 + 2σ)−1 = Dα̂,

Heineken’s characterization is the special case σ = 0, that is, when

“·” and “◦” coincide, and we are talking automorphisms of (G , ·).
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Thanks!

That’s All, Thanks!
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